

Tetrahedron Letters 41 (2000) 9205-9207

TETRAHEDRON LETTERS

Segetoside F a new triterpenoid saponin with inhibition of luteal cell from the seeds of *Vaccaria segetalis*

Sheng-min Sang,^{a,d,†} Ai-na Lao,^{a,*} Ying Leng,^a Zhi-ping Gu,^a Zhong-liang Chen,^a Jun Uzawa^b and Yasuo Fujimoto^c

^aInstitute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China

^bThe Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-01, Japan ^cCollege of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba 274, Japan ^dDepartment of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901-8520, USA

Received 12 September 2000; accepted 28 September 2000

Abstract

A new triterpenoid saponin, named segetoside F, showing strong inhibition of luteal cell activity, has been isolated from the seeds of *Vaccaria segetalis*. Its structure has been established by chemical reactions and spectral analyses. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

In previous papers,^{1–3} we have reported the isolation and structural elucidation of segetoside A, C–E, G–I from the seeds of *Vaccaria segetalis* (Neck) Garcke (Caryophllaceae), which is distributed all over China, except southern China, and used in Chinese folk medicine for promoting diuresis, activating blood circulation and relieving carbuncles.⁴ Further investigation of this seed led to the isolation of a new triterpenoid saponin, named segetoside F (1), which has the inhibition of luteal cell activity. In this paper we wish to report its structural elucidation and the inhibition of luteal cells.

The *n*-butanol fraction from the ethanol extract of the seeds of *Vaccaria segetalis* was chromatographed on Diaion HP-20, silica gel and RP-18 silica gel to afford segetoside F(1).

Segetoside F (1), an amorphous solid, has the molecular formula $C_{67}H_{104}O_{32}$ determined by positive ion FABMS (at m/z 1444 [M+Na]⁺) as well as ¹³C and DEPT NMR data. Its spectral features and physicochemical properties suggested 1 to be a triterpenoid saponin. Comparison of the signals from the aglycon moiety in the ¹³C NMR spectra with those from gypsogenin⁵ showed that the aglycon of compound 1 was gypsogenin and sugars were bound to the C-3 and C-28 positions of gypsogenin. The hexasaccharide nature of compound 1 was manifested by its

^{*} Corresponding author. Tel: +86-21-64311833 ext. 316; fax: +86-21-64370269; e-mail: anlao@mail.shcnc.ac.cn [†] Current address is Rutgers University.

Position	$\delta_{ m C}$	Position	$\delta_{ m C}$	$\delta_{ m H}$
1	38.2t	Glucuronic acid		
2	25.0t	1	103.5d	4.88 (1H, d, J=7.2)
3	83.8d	2	82.1d	4.17 (1H, m)
4	55.0s	3	77.4d	4.22 (1H, m)
5	48.8d	4	72.6d	4.40 (1H, m)
6	20.7t	5	76.8d	4.39 (1H, m)
7	32.5t	6	170.3s	
8	40.2s	6-OMe	52.1q	3.71 (3H, s)
9	47.8d	Galactose		
10	36.3s	1	106.3	5.21 (1H, d, J=8.0)
11	23.4t	2	74.5d	4.51 (1H, m)
12	122.4d	3	74.8d	4.11 (1H, m)
13	144.1s	4	70.1d	4.52 (1H, m)
14	42.3s	5	77.1d	4.10 (1H, m)
15	28.4t	6	62.2t ^a	4.50 (2H, m)
16	23.7t	Fucose		
17	47.2s	1	94.3d	6.00 (1H, d, J=8.0)
18	42.0t	2	73.8d	4.55 (1H, m)
19	46.4t	3	80.9d	4.25 (1H, m)
20	30.7s	4	73.9d	5.78 (1H, m)
21	34.0t	5	70.8d	3.96 (1H, m)
22	32.3t	6	16.5q	1.18 (3H, d, $J = 6.0$)
23	209.8d	4-OAc; CH ₃	20.7g	1.96 (3H, s)
24	11.1g	4-OAc; C=O	170.7s	
25	15.8g	Arabinose		
26	17.4q	1	111.8d	5.73 (1H, brs)
27	25.9g	2	83.6d	4.87 (1H, m)
28	176.4s	3	78.0d	4.80 (1H, m)
29	33.1g	4	85.8d	4.68 (1H, m)
30	23.7g	5	61.9t ^a	4.30 (1H, m)
	1			4.16 (1H, m)
		Rhamnose		
		1	102.1d	6.01 (1H, S)
		2	71.5d	4.72 (1H, m)
		3	72.4d	4.57 (1H, m)
		4	84.9d	4.28 (1H, m)
		5	68.7d	4.36 (1H, m)
		6	18.6g	1.78 (3H, d, $J = 6.0$)
		Xylose	1	
		1	107.5d	5.02 (1H, d, $J=7.2$)
		2	76.2d	4.00 (1H, m)
		3	78.7d	4.02 (1H. m)
		4	70.5d	4.18 (1H. m)
		5	67.5t	3.51 (1H, t, J=10.0)
		-	01.00	4.22 (1H m)

Table 1 ¹³C (150 MHz) NMR of compound 1 and ¹H (600 MHz) NMR spectra data for the sugar moieties of 1 (C_5D_5N) (δ in ppm, J in Hz)

^a Signals may be interchanged.

¹H [δ 6.01, s; δ 6.00, d, J=8.0 Hz; δ 5.73, brs; δ 5.21, d, J=8.0 Hz; δ 5.02, d, J=7.2 Hz; δ 4.88, d, J=7.1 Hz] and ¹³C [δ 111.8, 107.5, 106.3, 103.5, 102.1, 94.3] NMR data, respectively (Table 1). Alkaline hydrolysis of compound 1 followed by acid hydrolysis gave fucose, xylose, arabinose and rhamnose. On the other hand, acid hydrolysis of 1 gave glucuronic acid, galactose, fucose, xylose, arabinose and rhamnose, so glucuronic acid and galactose were connected to C_3 position of the aglycone, the other four sugars were connected to C_{28} position. The identity of the monosaccharide and the sequence of the oligosaccharide chain were determined by a combination of DEPT, COSY, HMQC, HMQC-RELAY, HMQC-TOCSY, HMBC-TOCSY and HMBC. In the light of the assigned ¹H and ¹³CNMR spectra (Table 1), the arabinose sugar unit was identified as α -arabinofuranose,⁶ and other sugar units were in pyranose form. The α anomeric configuration for the rhamnose was judged by its C₅ data (δ 68.7). The β anomeric configurations for the glucuronic acid, the galactose, the fucose and the xylose were judged from their large ${}^{3}J_{H1,H2}$ coupling constants (7-8 Hz). The HMBC spectrum showed that C3 with HGluA1, CGluA2 with HGal1, C_{28} with H_{F1} , C_{F2} with H_{R1} , C_{F3} with H_{A1} , C_{R4} with H_{X1} , C_{GluA6} with $H_{\delta 3.71}$ (-OCH₃), $C_{\delta 170.7}$ (C=O of acetyl) with H_{F4} and $H_{\delta 2.00}$ (CH₃ of acetyl) have cross peaks. Thus, segetoside F (1) (Fig. 1) was determined to be 3-O- β -D-galactopyranosyl(1 \rightarrow 2)- β -D-(6-O-methyl ester)-glucuronopyranosyl-gypsogenin-28-O- β -D-xylopyranosyl-(1 \rightarrow 4)- α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L-arabinofuranosyl($1 \rightarrow 3$)]- β -D-(4-O-acetyl)-fucopyranoside.

Figure 1. Structure of segetoside F

Segetalin F exhibited the strong activity of inhibition of luteal cell resulting in 100% at a concentration of 20 μ g/ml, Its IC₅₀ was 12.6 μ g/ml. The observation that a saponin like segetoside F showed inhibition of luteal cell activity is unique.

References

- 1. Sang, S. M.; Lao, A. N.; Wang, H. C.; et al. Phytochemistry 1998, 48, 569.
- 2. Sang, S. M.; Lao, A. N.; Wang, H. C.; et al. J. Asian Nat. Prod. Res. 2000, 1, 199.
- 3. Sang, S. M.; Lao, A. N.; Wang, H. C.; et al. Nat. Prod. Sci. 1998, 4, 268.
- 4. Jiangsu New Medical College, Zhong-vao-da-ci-dian; Shanghai Science and Technology Publisher, 1986; p. 311.
- 5. Mahato, S. B.; Kundu, A. P. Phytochemistry 1994, 37, 1517.
- 6. Yu, D.; Yang, J.; Xie, J. Analytical Chemistry Handbook (NMR Spectrum Analysis); Beijing Chemistry and Industry Publisher, 1989; p. 824.